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Abstract 

L. 1 ,  1 :  4 '  

Asymptotically stable linear time invariant system u e  capable of tracking u b i t r u y  reference signah with a bounded error 
proportional to the magnitude of the reference signal (and ita derivativa). It ir rhown that a rimilu property holdr for a general 
c l w  of nonlincu dynamical sys t em which includca all robob. A i  in the linear c w ,  the mar bound may be made 'arbitrarily" 
small by increasing the magnitude of the feedback gains which stabilixe the syrhm. i 
1 Introduction 
Tracking is the archetypal pursuit of the control theorist. Given a dynunical rystem, 

i = /(z,u), 
Y = h ( 4  

and a specified 'reference signal", t ( t ) ,  it is rquircd to find a control, u'(t) such that the forced system, i = /(T,Y*) 'tracks" r 
in some Sense - usually Iirn,-- y = r.  Solutionr to such problema generally involve prcfiltering the reference trajectory through 
a suitable 'feedforward" algorithm, and then adding a compensating error driven 'Yccdback" term to arrive at  the input. u.. If 
the reference signal is known i priori, then the feedlomud algorithm may entail pure differentiation to 'prccompensatc" for 
the l a p  introduced by the dynunical system itself. However, on-line differentiation of unknown and unpredictable signah haa 
long been eschewed by control theoristo u an unreliable technique for both theoretical u well u pr~c t i ca l  rewns. 

This paper considers the problem of tracking in the context of tclerobotic manipulators. It u shown that a generd C ~ W  

of highly nonlinear control sys t em which include all robot modch admitr tracking algorithm b u c d  upon high gain linear 
state variable feedback. The choice of a pure feedback b e d  algoorithm for tracking u surely not optimal in any men= of the 
word. ffowever. the only other techniques which are known to guarantee tracking for thu clrsr of system make use of feedback 
algorithms which attempt exact rancrilation ilq2,3!, (or 'nearly' exact cancellation, e.g. [4,51 ) of intrinsic nonlinear dynamical 
rernis v i a  feedback, and pure diferentiation of the  reference trajectory in the feedforward path. In robot applications admitting 
the use of a "high levcl" planner it is plausible that the entire future strategy might be made available a t  once to t h e  'low 
Ievt?l" controller in which case tracking scheme requiring pure differentiation of the reference signal might be acceptable. In 
telerobotic applications the reference signal is, by definition, i priori unknown: it is generated as a record of the unprdicted 
arbitrary motion of a human agent of control. Schemes which require pure dillerentiation will probably not be useful in this 
context. 

In a sense, the result reported here simply represents another example of the rimiluity between general mechanical systems 
and second order linear system. It is well known that asymptotically stable linear time invariant systeins are capable of tracking 
arbitrary reference signals wi th  a bounded crror proportional to the magnitude of the reference signal (and its derivatives). For 

fixed bound on this magnitude, the asymptotic tracking error may be made 'arbitrarily" small by increasing the magnitude of 
the eigenvalua in the left half of the complex plane. In practice, this is accomplished by increasing the gain of linear fedback 
compensators. In this paper it is shown that the analogous property holda true for the more generai class of nonlinear mechanical 
system. 

As in the theory of linear servomechanisms. a practical obstacle to the systematic usc of high gain feedback techniques in 
telerobotic applications is the inevitable presence of actuator torque limitations. Practical tracking s t ra tegia  which address this 
problem while maintaining convergence guarantees are very much needed. This important consideration is entirely ignored here. 
The problem of characterizing the transient response of feedback compensated nonlinezr mechanical systems is the topic of a 
paper cur-ently in progress. 
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3 Preliminary Discussion 

2.1 Notation and Deflnitionr 
If 1 : R" 4 Bn h u  continuour Bnt p u t i d  derintiva, denote ita m x n jac0bi.n matrix u Of.  When we require only 8 r u k c t  
of derivativa, e.g. when z = [ f: 1, urd we daire the jacobiur of I with r a p a t  to the m i a b k r  ZI E R"', u ra u held had, 

m m y  wrik 
Daaj D/ [ '"gn' 1. 

If A : J - E"'" ia rmooth map taking matrix valua then let 

p(A) rup rup Iz'Azl 
e~ 1 4 - 1  

If J h compact, or the entria of A u e  bounded then both v(A),p(A) u e  non-negative red numben. For any  CON^^ matrix, 
p(A) u the quare root of the eigenvalue of greateat magnitude, while v(A) u the q u m  mot of the eigenvalue of leut magnitude 
of A'A, from which it !ollowr that 

P(A)  = *UP IIA(q)II l/v(A) = nuPIIA-'(q)II, (6 J 
J 

where 11 
Given A wt P, a smooth x a l u  valued map, w : P 4 R u said to be poritiuc definite of o point p E P if w ( p )  = 0, urd v > 0 

in some open neighborhood of p. Given a smooth (time inwiant) vector field,/, on some p h w ,  apace, P, we shall ray that, v, 
a positive definite map at p d  E P, constitukr a Lyopuno~ /unction /or / ot pc if the time derivative along any motion of the 
vcctor field h non-positive, 

denota the operator norm induced by the eulcidean norm of R". 

= Dpv /(P) 20, 

in mme neighborhood of pd, and that it conatituta a rtnct Lyapumu [unction [or f if the inequality ir rtrict [6,7]. The domain 
of u with rnpect to p d  h the l u g a t  neighborhood uound p which h free of additional criiical poinb and upon which the 
derivative h still non-positive. 

The existence of a strict Lyapunov function at a point in a rufficient condition for uymptotic stability of that equilibrium 
state. If a rtrict Lyapunov function h u  not been found, uymptotic arability may, neverthelaa, be auured if a further condition 
on the pwible  limiting set holds. This is "LaSalle'r Inwiance Principle" 171. It is pwible, M welt, to draw conclusiom sbout 
the tracking capability of a forced dynamical system in consequence of of the stabi1it.y propcrtia of the unforced vector field at 
a put icu lu  quilibrium state. However, this neema to require the UM of a strict Lyapunov function. 

It ha been known for quite rome time that the total energy of a mechanical system may be interpreted w a Lyapunov 
function [a]. Unfortunately, this choice of Lyapunov function ia never strict. The ccntral contribution of this paper rub upon 
the construcrion of a strict Lyapunov function for the general c l u  of nonlinear mechanical system dacribed below. (1). The 
tracking rnulb  follow M a standard consequence. 

2.2 

The equations of motion of a kinematic chain have been extensively discussed in the robotics literature, and this paper will rely 
upon the standard rigid body model of an open chain with revolute joints. Thus, wc consider a robot LO be a put iculu member 
of the clus of mechanical sl(rtcms, 

where the generalized positions take valua in a configuration space, q E J ,  and M is a p i t i v e  definite invertible symmetric 
matrik for all q E 1. As shown in the appendix, in the c u e  of kinematic chains, M, the "inertial" terms, E ,  the "coriolia and 
centrifugal" term, and k, the gravitational disturbance vector, all vary in q by polynomials of transcendental functiona. It 

Dynamical Equations of Kinematic Chains 

Y[qIP' + Eli, 914 + k(q) = r (1) 

follows that u ( M )  > 0 and l ( M )  < 00. 
This system may be rewritten in the form 

i l  = 92 
6 = M-'(B* 

where the generalized positions and velcciria take d u a  p = * 1.6 
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k - fj 
A 

E P = TJ in p h c  space - the tangent bundle over J. 



Y 

I 

I 
I 

Whik A4,h UI dmy boundad, the carbit and centripetal foma UI qurdratk in the velocity - 1.0. B ir lineu in 4 - 
urd, tbadan, m y  bromr unbounded. It ls, howawr, bounded with rap& to q, u the following k l h n k d  m u l t  r h m .  

0 

a 

2.3 Stability Prope;ties of "PD" Compensated Systems 
Suppoae we are presented with the mechanical system (2), and a deaired point, 

C h m  two p i t i v e  definite matrices, KI, If, > 0, and define the "PD" algorithm 

r = k ( q )  - KlIqr - q1 - KzQ. 
In term ofthe trannslated "error coordinate system"for P ,  

the resulting c l d  loop system haa the form 

l e  0 
-M-'KI - M - l ( B  + K,) i = [  
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i o  a Lppunor Junction JOT the clorcd loop rvrtem (6). 

P d :  It t cleu that 3 t p i t i v e  definite at tho origin of the e m  eyntem. Taking the time d b t i v a  along tho 
roiutiona of the c l d  loop system, (e), 

Noting that ea P B, it follows from Corollary 2 , that the recond term L Identically zero. 

0 
There follows the desirable rwult that proportional and derivative linear atah feedback rtabilisa a mechanical syrtem, after 

the gravitational dkturbance torques have been removed. 
Theorem 1 ( [9,10,11] ) The origin 01 the elorrd loop error coordinate ryrtem (6) ir clrpptotieally rtoble. 

Proofi The exbtence of a Lyapunov Function, 3, w u r w  stability. According to LaSalle'r invariance principle, the 
0}, which, evidently, i the origin, since the vector attracting ret u the largest invariant set contained in { ( c I , ~ , )  E P : v 

field i oriented away from {e, E 0 )  everywhere elm on that hyperplane. 

0 

Notice that the proof of attractivity requirw an appeal to LaSalle's innriance principle in conrequence of the fact that 6 
is not a strict Lyapunov function. In order to obtain the desired exteneion to tracking problem it is n e c a u y  to construct 
one. Unfortunately, the constructions devised to date require the artificial limitation to decoupled PD feedback. Namely, in the 
sequel, it will be Maumed that the gain matricw of (8) arc specified o 

K, 4 w'I; K, 4 2qwI (7) 

given two positive real numbers, w ,  I. 

2.4 A Strict Lyapunov Function for Nonlinear Mechanical Systems 
The following technical lemma will be of use in the main result, below. 

Lemma 4 For M(9)  as in (1)  and any positiuc acalarr, a . P , I  E R+,  

where ' 1 .  
P Y ~ M )  

a 1 4 M )  > P' 
In particular, the matrir is positiuc definite when 

Proofi Since 

it will suffice to show that 
v ( X  8 I) = v ( K ) .  

This follows since all eigenvalues of K 8 I are eigenvalues of K, according to kmma 12 in the appcouix. The particular 
conclusion obtains by taking the determinant of K. 

e 

Proposition 5 For all Pd E P and w ,  c > 0,  g'uen any bounded set, B C P, wntaining pd there en'str a rcalar yo > 0 such that 

i8 a strict Lyapunou Function ,for the closed Imp system, (6) on the domain B ,  auruming the dccoupled feedhack gain matrices 
rpccified in (7). 
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find mme 70 ratbfying 

According to hmnu 4 and the inequality involving the fiNt entry of the inferior aet in (9). it follom that P m a paitive 
dellnits matrix for all q E J ,  hence u, ia p i t i v e  defnite at pc. 
T d i n g  time der int iva dong the mlutiona of ryrtem (e), we have 

8 = ieT[P A + ATP + PIC, 

which may k expanded u 

+~oc:[ fa - Blea. 
The term in the lut line vurbhea according to Corollary 2 . Mormer, the block matrix in the tint line ir paitive deanits 
according to the inequality (9) and the raul t  of k m m a  4 rince 

M - t  O I  

wt[(7o - 1)e:cr + c:M-'Bc*] = wtc:[(70 - 111 + ni(M-'el)jcr > 0, 

[ (JIM-' w M - l ]  = [ 
wM-' 701 

Finally, according to k m m a  1 , the term in the middle may be rewritten u 

where k 2 M - I c I ,  and the renult follows from the inequality involving the l ~ t  entry of the met in (9). * 

0 

3 Consequences for Tracking Unknown Reference Signals 

Now conrider the decoupled 'PD" compensated system forced by a continuously difTerentiable reference rignal. q,(t), 

t = k ( q )  - w'[qd(t)  - q1 - 2 q q .  (10) 

Assume that the reference trajectory is 'unpredictable" - i.e. its Fnt and second derivati7a are unknown - but there is 
available an h priori bound on the maximum rate of change, 

llqdll 5 0%. 

Notice that the forced closed loop system may be written in the same error coordinate u (S), above, 

i = A[q,q]c  + d ,  (11) 

where d 2 [ '$') 1, is a 'disturband input due to the unknown but non-zero reference derivative. 

Theorem 2 The ClOdCd loop 'disturbed' error system (11) hor bounded tmjectoricr which arymptotically approach the ret 

where 

Proofi We have 
U = ieT[PA + A'P + PIC + c'Pd, 

Thin is negative whenever e is outside the et indicated in the statement of the theorem. 
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ComUuy d l%a -@otic tmckiw bound may k made arbitrarily rmdl bv inenoricy the mognitudrr of the J&k + 
in (lo) 
Prool: For a ruRiciently luge d u e  of w it is pwible  to choose two red numbem st, IC# E (0,l) ouch that 

f = W Y O J u ? M j  i 7 0  = 

and the inequality (9) rtill h o b .  Uriag thac definitionr md the rcsulh of the theorem, the attracting region i bounded 
by the -itude 

r n 2 p q / ( C j / " ( M ) )  + l/w', 
4K) 

Nota that 
v ( K )  = w + 7ou(M)/w - 

= w + q v ( M )  - 

E R''''-. 
- allE ... almE 

a d  ... a d 3  

hence, 

md v ( K )  h bounded from below as w inc-. Since IC) may be made ar s d l  Y dcsind without violating (O), the result  
follows. 

s 
( A ~ )  = T A ~  

Proof: For p = nm, let 8 e { b , ,  ..., b p }  cenote the canonical basis of Rp - i.e., & is a column of p entria with a single - entry, 1, in position i, and the other 3 - 1 entria set equal to zero. The transpose operator h a reordering of the canoniul  
basis elements, hence may be represented by the elementary matrix, 

T ' [bi,bn+i, &+I .-,b(,-i)n,.i, bt bn+lr hn+z, - - - v  b(m-i+zV ...bn, bnibk, ....b-] . 

0 
A 8 3  For n = m, if we define P+ = I + TI P- = I - T then both operaton are projections onto the set of uskew-r).mmetric' , 

'symmetric" operatom of R", repscctively, since Pi = P*. Note that Ker P* = Im Pi. 
The kronecker product doea 'distribute" over ordinary matrix nxltiplication in the appropriak fashion. 
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Lemma 11 For any rquara army, A E R"'", i/ fm ir fhc idenfify on R" then fAr rpcetrurn o/ 
rpeclrum o/ A. 

Proofi Suppase A in an eigenvalue of ( A  8 fm). There murt be mme non-zero vector 
A(/" 0 fn) - ( A  6D I )  Since I = X' E R""", it followr that 

0 zz IA(fn QP fm) - ( A  8 I ) ] .  
8 

= [AX - XA'] 
= [X(A/,, - A')] ' .  

A @ I,) ir contained in fhc 

t E R" in the kernel of 

Thu implien that Im f l  C Ker AI,, - A, and rince the former nubrp.cs h u  dimenmion at Ieut I (according to the 
aaaumption that X f 0), the latter must u well. Thur, A u an eigenvalue of A. 
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B General Robot Arm Dynamics 
The rigid body model of robot u m  dynkier  may be mort quickly derived by r p p d  to the Iagrangian formulation of Ncwton'r 
Equationr. If a ~ a l u  function, termed a lamngian, A = IC - u, t defined u the difference between total kinetic energy, IC, and 
total potential energy, u, in a ryrtem, then the equationa of motion obtain from 

d zD~A - D,A = r', 

where r in a vector of external torqua and forca 113,141. 
Fint conrider the kinetic energy contributed by a rmll volume of m u r  6- at paltion p in link &,. 

6% = f0p70fi16~ 

where "pc = "fi 'p ir the matrix reprcacntation of the p i t i o n  p in the b w  frame of ir the matrix repracntation d 
the frame of reference of link L' in the b w  frunc, and 'p u the matrix representation of the point in the link f r a m e d  refenno, 
and, hence, I 

rince the pwition in the body in independent of the generalized coordinata. The total kinetic energy contributed by thu lid 
may now be written 

= i; 'p, 

rci = It, t [h 'PI' A 'Pdm 
T 

= j t ,  t troce{ii  'P [A 'PI )dm, 
= f trace{k I:, p'pTdm( [&IT) 
= trace {k,75;@}, 

(~ince the frame matrix is constant over the integration), where 
Explicitly, if the link haa mass, A, center of gravity (in the local link coordinate ryrtem) pi, and inertia matrix, z, then 

u a rymmetric matrix of dynamicol pornmeterr for the link. 

Passing to the rtaek reprerentation (refer to Appendix A) 

2 ~ ,  = trace {&E@} 
= [(kE)8IT&8 

= [ ( E @  f)T&qT&s 
= [&p@ 
= [P,P RCD,i;;" Id 
= q'M,~j, 

where we have implicitly defined 

M,(q) 2 [D,F,a]T&D,F,a ; P, - = A-T  P, @ I .  
It follows tha t  the total kinetic energy of the entire chain u given a.e 

= hiTM(q)9; 1 M(q) 2 k M , ( q ) .  
1=1 

The potential energy contributed by 6m, in f, is 

6v, = 4 F, 'pq6m, 

where g is the acceleration of gravity, hence the potential energy Contributed by the entire link is 

v, = gF, 'pgdm, = gF,Kg,  

and v = z:F,Ag. ' 
To proceed with the computation, note that D,X = D,K = q'M(q). hence, 

d 
-D,X = p"M(9) + iTi6f(q). 
dt 

'We will omit the pnor superscript, 0, when it in clear the the coordinate q i t e m  of reference u tbe bur 

'Auume that to *point8 up. in a direction opposinu the gravitational field. 
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Moreover, 

hence,if all term from Lagrmge'r quation involving the generalired velocity u e  collected, we may expram them in the form 
#E', where 

B(9,Q)' 9 A(9) - i[QT@ I]D,M'. 1 

Finally, by de6ning k(9) 2 (D,u IT, Lyrmge'r quatioo may k written In thr  h u  (1) 

Wq)i + B(9, i)i + k(9) = r. 

M, called the "inertia" matrix, may be rhown to be p a i t i w  de6nita over the antire workapace u well u bounded from above rince 
It C O ~ ~ ~ I U  only polyomiah involving trumwndenkl function8 d q. B conkinr term u u i n g  from "coriolt" m d  "centripetal" 
forca, hence t l ineu In i ( t h w  forcm u e  qurdratk in the m e r a l i i  volocitia), and bounded in 9, rince it involvss only 
polynomial of truucendental functionr in the generalid p i t i o n ,  Finally, & uba from gravitational forca, t boudded, and 
may be o k m e d  to have much rimpler rtructum (rtill polynomial in truucendentd involving 9) than the other a p - i o ~ .  
An importurt study of the form of thaw term w u  conducted by Bejcry [IS]. 
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